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1. Euler Integration in o-minimal setting 

1.1. Introduction. Integration with respect to Euler characteris- 
tic is a homomorphism fx -dx : CF(X) —> Z from the ring of con- 
structible functions CF(A") ("tame" integer-valued functions on a 
topological space X) to the integers Z. It is a topological integration 
theory which uses as a measure the venerable Euler characteristic 
\. Euler characteristic, suitably defined, satisfies the fundamental 
property of a measure: 

(1.1) X(Al>B) = x(A) + x{B)-x(AnB),    * 

for A and B "tame" subsets of X. We extend the theory to R-valued 
integrands and demonstrate its utility in managing incomplete data 
in, e.g., sensor networks. 

1.2. Constructible integrands. Because the Euler characteristic 
is only finitely additive, one must continually invoke the word "tame" 
to ensure that x is well-defined. One means by which to do so it via 
an O-MINIMAL STRUCTURE [39], a sequence O = (O,,) of Boolean al- 
gebras of subsets of R" satisfying a small list of axioms: closure un- 
der products, closure under projections, and finite decompositions 
in 0\. Elements of O are called DEFINABLE sets and these are "tame" 
for purposes of integration theory. Examples of o-minimal struc- 
tures include (1) piecewise-linear sets;1 (2) semi-algebraic sets; and 
(3) globally subanalytic sets. 

Definable functions between spaces are those whose graphs are 
in O. For X and Y definable spaces, let Def(A'.y) denote the class 
of compactly supported definable functions h : X —» Y, and fix 
as a convention Def(X) = Def(X,R). Let CF(X) = Def(.WZ) C 
Def {X, R) denote the ring of CONSTRUCTIBLE FUNCTIONS: compactly 
supported Z-valued functions all of whose level sets are definable. 
Note that in general, definable functions (even definable 'homeo- 
morphisms') are not necessarily continuous. 

We briefly recall the theory of Euler integration, established as 
an integration theory in the constructible setting in [28, 36, 35, 38] 
and anticipated by a combinatorial version in [6, 21, 22, 34]. Fix an 
o-minimal structure O on a space X. The geometric Euler character- 
istic is the function x '• O —> Z which takes a definable set A G O to 
X(A) = E,(-l)' dim H?M{A; R), where //,BA/ is the Borel-Moore ho- 
mology (equivalently, singular compactly supported cohomology) 

Some authors require an o-minimal structure to contain algebraic curves, 
eliminating this particular example. 



of A. This also has a combinatorial definition: if A is definably home- 
omorphic to a finite disjoint union of (open) simplices Jj aJt then 
x{A) = ^,(-l)d"nCTj- Algebraic topology asserts that \ is indepen- 
dent of the decomposition into simplices. The Mayer-Vietoris prin- 
ciple asserts that \ is a measure (or 'valuation') on O, as expressed 
in Eqn. [1.1]. 

The EULER INTEGRAL is the pushforward of the trivial map A' »-> 
{pt} to Jx dX : CF(X) - CF({pt}) = Z satisfying /v 1,, dX == \ (,11 
for 1A the characteristic function over a definable set A. From the 
definitions and a telescoping sum one easily obtains: 

(1.2) 
- oo oo 

I hdX=  Y. sX{h = s} = Ytx{h>s}-X{h<-s} 
Jx »=-oo s=0 

Because the Euler integral is a pushforward, any definable map F : 
X^Y induces F, : CF{X) -» CF(y) satisfying (v /i f/\ = Jv F./i r/\. 
Explicitly, 

(1.3) F.My)= /      hdx, 

as a manifestation of the Fubini Theorem. 
The Euler integral has been found to be an elegant and useful tool 

for explaining properties of algebraic curves [8] and stratified Morse 
theory [37,9], for reconstructing objects in integral geometry [35], for 
target counting in sensor networks [1], and as an intuitive basis for 
the more general theory of motivic integration [12,13]. 

1.3. Real-valued integrands. We extend the definition of Euler 
integration to R-valued integrands in Def(A') via step-function ap- 
proximations. 

1.3.1. A Riemann-sum definition. 

DEFINITION 1. Given h e Def(X), define: 

(1.4) I h[dx\    =    Hm - / [nh\dx. 
Jx n^°° n Jx 

(1.5) j h\dx\    =    lim - / \nh]d\. 
Jx •^3° n Jx 

We establish that these limits exist and are well-defined, though 
not equal. 
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LEMMA 2. Given an affinefunction h £ Def(a) on an open k-sintplex 

(1.6) [ h [dx\ = (-l)*inf/i;   [ h \d\] = (-l)fcsup/i. 

This integration theory is robust to changes in coordinates. 

LEMMA 3. Integration on Def(A') with respect to [d\\ and \d\] is 
invariant under the right action of definable bisections of X. 

LEMMA 4. The limits in Definition 1 are well-defined. 

Integrals with respect to [d\\ and \d\] are related to total varia- 
tion (in the case of compactly supported continuous functions). 

COROLLARY 5. If A/isal-dimensionalmanifoldand/; £ Def(jl/) 
is continuous, then 

(1.7) / h [dx\ = - f h \dx\ = JtotvarW. 

This result generalizes greatly via Morse theory: see Corollary 11. 
One notes that [d\\ and \dx\ give integrals which are conjugate in 
the following sense. 

LEMMA 6. 

(L8) f h\dx\ =-f-h[dX\. 

The temptation to cancel the negatives must be resisted: see Lemma 
12 below. 

1.3.2. Computation. Definition 1 has a Riemann-sum flavor which 
extends to certain computational formulae. The following is a defin- 
able analogue of Eqn. [1.2]. 

PROPOSITION 7. For h e Def(A'), 

(1.9) / h [dx\   =    I    X{h > s} - \{h < -s) ds 

(1.10) I h\dx\   =    [°° x{h>s}-X{h<-s}ds. 
JX Js=0 

It is not true that J Y h [d\\ = J^° s\{h = s}ds: the proper Lebesgue 
generalization of Eqn. [1.2] is the following: 



PROPOSITION 8. For h e Def (A), 

(1.11) /  h [d\\   =    lim - / s X{s <h<s+ e} ds 
J.v f-*"+ f 7R 

(1.12) / h \dx\    =    lim - / s \{.s < h < s + (.} ds. 
Jx f-0+ e Jm 

1.3.3. Morse theory. One important indication that the definition 
of J [d\\ is correct for our purposes is the natural relation to Morse 
theory: the integrals with respect to [dx\ and \d\] are Morse index 
weighted sums of critical values of the integrand. This is a localiza- 
tion result, reducing from an integral over all of A to an integral over 
an often discrete set of critical points. 

Recall that a C2 function h : M —» R on a smooth manifold M 
is MORSE if all critical points of h are nondegenerate, in the sense 
of having a nondegenerate Hessian matrix of second partial deriva- 
tives. Denote by C(h) the set of critical points of h. For each p e C(h), 
the MORSE INDEX of p, n{p), is defined as the number of negative 
eigenvalues of the Hessian at p, or, equivalently, the dimension of 
the unstable manifold Wu(p) of the vector field - V/i at p. 

Stratified Morse theory [20] is a powerful generalization to trian- 
gulable spaces, including definable sets with respect to an o-minimal 
structure [9, 37]. We may interpret [dx\ and \dx] in terms of the 
weighted stratified Morse index of the graph of the integrand. 

DEFINITION 9. For X c W definable and h e Def (A), define the 
co-index of h, I*h to be the stratified Morse index of the graph of //, 
T/, dxR, with respect to the projection it : X x R —> R: 

(1.13) (Th)(x)=    lim    x (BAx) 0{h< h(x) + c'}) , 

where Bt(x) is the closed ball of radius t about x G X. The index /. 
is the stratified Morse index with respect to height function — n: i.e., 
IJi = l*(-h) or 

(1.14) (l,h){x) =    lim    v (Be(x) n {/; > h{x) - e'}) . 

Note that lt, T : Def (A") -» CF{X), and the restriction of these 
operators to CF(X) is the identity (every point of a constructible 
function is a critical point). The two types of integration on Def(.V) 
correspond to the Morse indices of the graph with respect to the two 
orientations of the graph axis — the projections n and -n. 



THEOREM 10. For any continuous h e Def(X), 

(1.15) / h [dx\ = fhTh dX   ;     I h \dx] = fhl.h dx- 

COROLLARY 11. If h is a Morse function on a closed /^-manifold 
M, then: 

(1.16) / h[dx\=  £(-l)B •/'(p) HP); 
peC(h) 

(i.i7) / h\dX}= Y, (-i)"00^)- 
^ pec(h) 

From this, one sees clearly that the relationship between [</\J and 
\dX] is regulated by Poincare duality. For example, on continuous 
definable integrands over an n-dimensional manifold M, 

(1.18) / h\dx] = (-!)" [ h[dX\. 
JM JM 

The generalization from continuous to general definable integrands 
is simple, but requires weighting l*h by h directly.   To compute 
/  h[d\\, one integrates the weighted co-index 

(1.19) lim    h(x + e')x (BAX) n{h< h(x) + e'}) 

with respect to d\. 
Corollary 11 can also be proved directly using classical handle- 

addition techniques or in terms of the Morse complex, using the 
fact that the restriction of the integrand to each unstable manifold 
of each critical point is unimodal with a unique maximum at the 
critical point. It is also possible to express the stratified Morse index 
— and thus the integral here considered — in terms of integration 
against a characteristic cycle, cf. [20, 37]. 

One final means of illustrating Corollary 11 is to use a deforma- 
tion argument. Let h be smooth on X and (f>t be the flow of —V/J. 

Then the integral is invariant under the action of (p, on h; yet the lim- 
iting function hx = lim(_oc h o <f>t is constant on stable manifolds of 
- V/i with values equal to the critical values of h. We have not shown 
that the limiting function is constructible (this depends on the exis- 
tence of definable invariant manifolds — we are unaware of relevant 
results in the literature) and thus do not rely on this method for proof 
but rather illumination. 



1.4. The integral operator. We consider properties of the inte- 
gral operator(s) on Def(A'). 

1.4.1. Linearity. One is tempted to apply all the standard con- 
structions of sheaf theory (as in [36, 35]) to Jx : Def(A) -» R. How- 
ever, our formulation of the integral on Def (A) has a glaring disad- 
vantage. 

LEMMA 12. /v : Def (A) -• R (via [d\\ or \d\]) is not a homomor- 
phism for dim X > 0. 

This loss of functoriality can be seen as due to the fact that [/ + g\ 
agrees with [f\ + [g\ only up to a set of Lebesgue measure zero, not 
Y-measure zero. The nonlinear nature of the integral is also clear 
from Eqn. [1.15], as Morse data is non-additive. 

1.4.2. The Fubini Theorem. In one sense, the change of variables 
formula trivializes (Lemma 3). The more general change of variables 
formula encapsulated in the Fubini theorem does not, however, hold 
for non-constructible integrands. 

COROLLARY 13. The Fubini theorem fails on Def(A') in general. 

Fubini holds when the map respects fibers. 

THEOREM 14. For h e Def (A), let F : X -» Y be definable and h- 
preserving (h is constant on fibers of F). Then jy Fth[d\\ = j\.h[d\\, 
and fYF,h\dx] = Jxh\d\\. 

COROLLARY 15. For h e Def(X), Jv h = JR hth. In other words, 

d-20) f h\dX\=  ( sX{h = s}ldX\, 
Jx Ju 

and likewise for \d\]- 

1.4.3. Continuity. Though the integral operator is not linear on 
Def (A'), it does retain some nice properties. All properties below 
stated for /  [d\\ hold for J \d\] via duality 

LEMMA 16. The integral f [d\\ : Def (A') —> R is positively homoge- 
neous. 

Integration is not continuous on Def (A') with respect to the C" 
topology. An arbitrarily large change in j h[d\\ may be effected by 
small changes to h on a (large) finite point set. In some situations 
the "complexity" of the definable functions can be controlled in a 
way sufficient to ensure continuity. 

One example arises in the semialgebraic category. Fix a (finite) 
semialgebraic stratification S of a compact definable X, and consider 



definable semialgebraic functions algebraic with respect to this strati- 
fication (that is such that the restriction of the function to any stratum 
S € S is a polynomial P;). The resulting linear space (filtered by the 
subspaces of polynomials of bounded degree) can be equipped with 
the structure of a Banach space, by completing the family of semi- 
norms ||P||s,k = masses ||Ps||c", where n = dim A. Then /v -[d\\ 
becomes a continuous (non-linear) functional on this Banach space. 
The proof results, essentially, from the Bezout theorem (mimicking 
Thom-Milnor theory): the total number of critical points graph of 
a polynomial of degree Dona fixed semi-algebraic set is bounded 
by 0(Dn). The generalization to increasing (refined) stratifications is 
straightforward. 

Integration itself defines a natural topology for Def (A') on which 
integration is continuous. Define the!,1 f-neighborhood of/? C Def (A) 
as the intersection of the C° t-neighborhood (definable functions with 
e-close graphs) with those functions g <E Def (A') satisfying |/Y f — g [d\\ | < 
f. This provides a basis for an L1 topology on Def(A'). As a conse- 
quence of Lemma 6, the definition is independent of the use of |//\J 

orfrfxl- 
The interested reader may speculate on other function space topolo- 

gies on Def (A). 
1.4.4. Duality and links. There is an integral transform on CF(X) 

that is the analogue of Poincare-Verdier duality [37]. It extends seam- 
lessly to integrals on Def (A') by means of the following definition. 

DEFINITION 17. The DUALITY OPERATOR is the integral trans- 
form V : CF{X) -» CF{X) given by 

(1.21) Vh(x) = lim   / hlH {,)<l\- 
t-o+Jx 

where Bc is an open metric ball of radius t. 

We extend the definition to V : Def(A) —> Def(A) by integrating 
with respect to [d\\ or \d\~\, interchangeably, via: 

LEMMA 18. Vh is well-defined on Def (A) and independent of whether 
the integration in (1.21) is with respect to [d\\ or \dx]. 

For a continuous definable function h on a manifold M, Vh = 
(-l)dimMh, as one can verify by combining Eqns. [1.9] and [1.21]. 
This is commensurate with the result of Schapira [36] that T> is an 
involution on CF(X). 

THEOREM 19. Duality is involutive on Def(A): V o Vh = h. 
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One can define related integral transforms. For example, the 
LINK of h e CF(X) is defined as 

(1.22) \h{x) = lira   / h\aBi[x)dX. 
«-©+ Jx 

The link of a continuous function on an re-manifold M is multipli- 
cation by 1 + (-1)", as a simple computation shows. In general, 
A = Id - V, where Id is the identity operator. 

1.5. Integral transforms. Integration with respect to Euler char- 
acteristic over CF(X) has a well-defined and well-studied class of 
integral transforms, expressed beautifully in Schapira's work on in- 
version formulae for the generalized Radon transform in </\ [35]. 
Integral transforms with respect to [d\\ and \d\] are similarly ap- 
pealing, with applications to signal processing as a primary moti- 
vation. Examples of interesting definable kernels for integral trans- 
forms over Euclidean M" include ||x — y\\, (x, y), and g(x - y) for some 
g. These evoke Bessel (Hankel) transforms, Fourier transforms, and 
convolution with g respectively. The choice between [d\\ and [r/\| 
makes a difference, of course, but can be amalgamated. Example: 
for fixed kernel K, one can consider the mixed integral transform 
h i-» JxhK[d\\ - JxhK\dx\. In the case of K{x,£) = (x,£>, this 
transform takes 1,4 for A compact and convex to the 'width' of .4 
projected to the <^-axis. 

1.5.1. Convolution. On a vector space V (or Lie group, more gen- 
erally), a convolution operator with respect to Euler characteristic is 
straightforward. Given /, g e CF(V), one defines 

(1.23) (f*g)(x)= I f(t)g(x-t)dx. 

Convolution behaves as expected in CF(V). By reversing the or- 
der of integration, one has immediately that jv f*gd\ = Jv f d\ j\ gd\- 
There is a close relationship between convolution and the Minkowski 
sum, as observed in, e.g., [21]: for A and B convex and closed 1., * 
\B = 1.4+fl, cf. [38, 36]. Convolution is a commutative, associative 
operator providing CF(V) with the structure of an (interesting [8]) 
algebra. 

Convolution is well-defined on Def(V') by integrating with re- 
spect to [dx\ or \d\]. However, the product formula for f f*g fails in 
general, since one relies on the Fubini theorem to prove it in CF(V). 

1.5.2. Linearity. The nonlinearily of the integration operator pre- 
vents most straightforward applications of inversion formulae a la 
Schapira.   Fix a kernel K G Def(X x Y) and consider the integral 
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transform TK : Def(X) -> Def(Y) of the form {TKh){y) = J\ h{x)K{x.y)[dx\(x). 
In general, this operator is non-linear, via Lemma 12. However, some 
vestige of (positive) linearity survives within CF. 

LEMMA 20. The integral transform TK is positive-linear over CF+{.\ ) = 
Def(A\N). 

This implies in particular that when one convolves a function h € 
CF+(Rn) with a smoothing kernel (e.g., a Gaussian) as a means of 
filtering noise or taking an average of neighboring data points, that 
convolution may be analyzed one step at a time (decomposing h). 

Integral transforms are not linear over all of CF(X), since J —h [d\\ ^ 
- f h[d\\. However, integral transforms which combine |</\J and 
\d\\ compensate for this behavior. Define the measure [d\] to be the 
average of [d\\ and \d\]: 

(1.24) J h[dX] = \ (J h[dX\ + j h\dXVj • 

THEOREM 21. Any integral transform of the form 

(1.25) (TKh)(y) = j h(x)K(x, y)[dX)(x) 

is a linear operator CF(X) —• Def(V'). 

As a simple example, consider the transform with kernel A (./, f) = 
{x,£). The transform of 1A with respect to [d\\ for A compact and 
convex equals a 'centroid' of A along the £-axis: the average of the 
maximal and minimal values of £ on dA. Note how the dependence 
on critical values of the integrand on DA reflects the Morse-theoretic 
interpretation of the integral in this case. 

Integration with respect to [d\] seems suitable only for integral 
transforms over CF. On a continuous integrand, the integral with 
respect to [d\] either returns zero (cf. the integral of Rota [34]) or 
else the integral with respect to |dx_|/ depending on the parity of the 
dim A', via Eqn. [1.18]. 

1.6. Applications of definable Euler integration. The Euler cal- 
culus on CF is quite useful; the extension to Def deepens this utility 
and opens new potential applications, of which we highlight a few. 

1.6.1. Sensor networks. An application of Euler integration over 
CF(X) to sensor networks problems was initiated in [1]. Consider a 
space X whose points represent target-counting sensors that scan a 
workspace W. Target detection is encoded in a SENSING RELATION 
S C W x X where (w, x) e S iff a target at w is detected by a sensor 
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at x. Assume that sensors count the number of sensed targets, but 
do not locate or identify the targets. The sensor network therefore 
induces a TARGET COUNTING FUNCTION h : X -* N of the form h = 
J2a lt/0/ where UQ is the TARGET SUPPORT — the set of sensors which 
detect target <v. Euler integration allows for simple enumeration: 

THEOREM 22 ([1]). Assume h € CF(X) and \{Un) = N ^ 0for all 
a. Then the number of targets in W is precisely jj fx hd\. 

Since the target count is presented as an integral, it is possible to 
accurately estimate the answer when the integrand /;. is known not 
on all of X (a continuum of sensors being an idealization) but rather 
on a sufficiently dense grid of sample points (physical sensors in a 
network). 

The R-valued theory aids in establishing expected values of tar- 
get counts in the presence of confidence measures on sensor read- 
ings. Let J\f = {xt} denote a discrete set of sensor nodes in R", and 
assume each sensor returns a target count h(xt) e- N and a fluctuation 
measure c(x,) € [0, 1] obtained, say, by stability of the reading over a 
time average. View h as a sampling over J\f of the true target count 
/ = Yla If 'a- Assume that nodes with fluctuation reading 0 have per- 
fect information (h = / at x,) and that c correlates with error \f - h\. 
Assume that sensor nodes J\f are the vertex set of a triangulation T. 

The integral of an extension of / over a triangulation gives a ter- 
rible approximation to / hd\: an error of ±1 on K nodes can cause 
a change in the integral of order A'. More specifically, if h = / + e, 
where e : N —» {-1,0,1} is an error function that is nonzero on a 
sparse subset N' C M, then, for certain infelicitous choices of Ar', 

\!h-M\ = W'\- 
A M-valued relaxation can mitigate errors by using fluctuation 

c as a weight. Let N(i) be a collection of neighboring nodes to r,, 
where neighborhood can be defined via distance (if available) or 
edge-distance (in an ad hoc network or triangulation). Define // to 
be the result of averaging the value at x, € J\f over JV(?'), with c as a 
weight. Specifically, 

(1.26) h{xt) = -= —-. 

This nearest-neighbor convolution damps out local variations. The 
resulting integral with respect to [d\\ will tend to mitigate localized 
errors, thanks to the Morse-theoretic formula.More numerical inves- 
tigation is warranted. 
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Such averaging leads to non integer-valued integrands. By us- 
ing integration with respect to [d\\ or [d\~| for upper/lower semi- 
continuous integrands associated to an averaged signal h, one ob- 
tains an expected value of / h d\- This can be particularly illuminat- 
ing when a network has incomplete information, e.g., a hole. Holes 
in a network can be modeled by setting the confidence measure c to 
zero and averaging. 

1.6.2. Numerical integration. Though integration with respect to 
Euler characteristic has a lengthy history, there appears to be no 
treatment of numerical integration, even in the simpler setting of 
CF+(W). The central problem (in the constructive and definable 
categories) is how to estimate JY h given the values of h on a discrete 
subset of X. As in the case of numerical integration for Riemann 
integrals, one typically assumes something about the features of h 
and/or the density and extent of the sampling set. In [1], the present 
authors give a formula for estimating / h d\ given a discrete sam- 
pling of h € CF(R2) which correctly samples connectivity data of 
excursion sets. This formula generalizes to the definable category: 

PROPOSITION 23. For h e Def(R2) continuous, j h [d\\ - 

(1.27) /    #,{/» > s) + /30{h > -s) - 0o{h < s} - (30{h < -s)ds, 
Js=0 

where (30{-) = dim Ho{-\ R), the zeroth Betti number. 

The value of Proposition 23 is that it allows for computation based 
on 0o quantities. Such connectivity data are easily obtained from a 
discrete sampling via clustering. We have implemented this formula 
in software.However, for more general integration domains than R2, 
duality formulae are less helpful. One general result on refinement 
follows from continuity of the integral operator. 

THEOREM 24. For h e Def(A') continuous, let hPL be the pieceirise- 
linear function obtained from sampling h on the vertex set of a triangulation 
T of X. As the sampling and triangulation are refined, 

(1.28) lim    f hPL[dX\=  I h\dX\. 

This result relies crucially on continuity and does not apply to 
CF(X). A more desirable result would be a measure of how far a 
given sampling is from the true integral. This seems challenging. 
We note that the Morse-theoretic formulae [1.16]-[1.17] allow one to 
reduce the domain of an integral to a (typically finite) set of critical 
points. This 'focusing' property of integration over Def should be a 
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starting point for good numerical algorithms, especially for integral 
transforms. 

2. Unimodal Category 

2.1. Introduction. Here we introduce a novel topological approach 
to the problem of decomposing distributions / : R" —> [0, oo) into a 
convex combination of basis distributions. Instead of employing a 
decomposition into analytically defined (e.g., normal) distributions, 
we propose a decomposition into topologically defined factors. Specif- 
ically, we consider the decomposition of a distribution into a sum of 
UNIMODAL distributions: those with a single maximum value and 
no other extrema. Such a decomposition is not uniquely defined; 
however, the minimal number of unimodal summands is. This UNI- 
MODAL CATEGORY, UCAT(/), is a coarse measure of complexity for a 
distribution. The computation of UCAT is not obvious. 

2.1.1. Motivation. There are several contexts within which the ques- 
tion about the number of summands in a unimodal decomposition 
arises. The first such context is, obviously, the statistical one. Indeed, 
unimodal distributions are the primal building blocks of statistical 
models. Essentially all classical probability distributions, including 
normal, Poisson, Gamma, Beta, Bernoulli, and more, are all uni- 
modal. The methodology of statistical modeling essentially forces 
one to assume that the presence of several modes in a distribution is 
a consequence of its being a mixture of several distributions, and the 
relationship between the number of modes (essentially, the number 
of local maxima of the density, in the multivariate case) and the num- 
ber of "components" of the mixture, i.e., the number of summands 
in the convex decomposition, has been studied by many authors. 

To justify the radical difference of our setup from the traditional 
statistical one — our lack of any assumptions about the structure of 
the summands beyond unimodality — we can invoke two consider- 
ations: 

(1) The very variety of unimodal building blocks in standard 
statistical models suggests that one should try to abstract 
away any specific distribution, retaining only the minimal 
topological properties. 

(2) Any specific analytic form of a density binds the distribution 
to some fixed coordinate system.   Adopting a completely 
coordinate-free decomposition will inexorably relax to a topo- 
logical approach. 
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We envisage applications of this topological decomposition to a 
variety of contexts within statistics, as well as data analysis and visu- 
alization (where decomposition can play a role in efficient encoding 
of the images or of multidimensional data). 

The particular application inspiring this paper comes from sig- 
nal analysis and reconstruction in a problem of target enumeration 
by means of a field of sensors [?]. In that setting, one has a finite 
number of targets located throughout a domain D. The domain is 
assumed to be filled with a network of primitive sensors. A sensor 
at a: € D returns a number h(x) e N which represents a count of how 
many targets it senses. The problem is to compute the number of tar- 
gets given the function h : D —» N. Assume each target a has a com- 
pact contractible support U„ on which it is observed by all sensors 
within. Then, the paper [?] computes the number of targets based 
on the Euler characteristics of excursion sets of h. When, however, 
one assumes a sensor modality which reads a [0, oo)-valued signal 
instead of an integral count, the methods of [?] do not apply, and the 
techniques of this report take over. For example, in a network with 
acoustic or infrared sensors, it is more reasonable to expect sensors 
to return a real-valued signal which sums the contributions of in- 
range targets, these contributions varying in intensity as a function 
of range-to-target. Assuming a distribution of target sensory impact 
is a very weak assumption; however, the methods of this paper yield 
lower bounds on the enumeration problem. 

2.1.2. Statement of Results. The extent of this report is to define 
the unimodal category, give a complete characterization and method 
of computation in the univariate case, and provide some key steps to 
understanding decompositions of higher-dimensional distributions. 
The specific contributions are as follow: 

(1) We observe (Lemma 30) that the unimodal category is in- 
variant under the right-action of a homeomorphism on the 
domain. This demonstrates the topological naturality of our 
definitions. 

(2) We give a complete description (Theorem 36) of the uni- 
modal category in the univariate case, along with a simple 
algorithm for its computation. 

(3) We demonstrate that the univariate and bivariate cases, the 
unimodal number is a function of the Reeb graph of the dis- 
tribution, labeled by critical values (Proposition 39). This 
implies that the unimodal category is purely a function of 
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Morse-theoretic data, providing a discretization of the prob- 
lem. 

(4) We prove a result (Proposition 41) about the 'persistence' of 
unimodal category with respect to translating the graph of 
the distribution. Shifting vertically can only decrease the 
unimodal category, and this number stabilizes to the value 
two. 

(5) For distributions in arbitrary dimensions, we show (Proposi- 
tion ??) that a minimal unimodal decomposition exists with 
"depth" (the degree of overlaps of supports) bounded above 
by the dimension of the domain. We believe this result will 
be useful in computing the unimodal category by means of 
topological tools. 

2.1.3. Related work. Morse structures associated to mixtures of 
multivariate normal distributions are discussed in [32]. This ques- 
tion already seems to be of interest to statisticians — even the simple 
univariate case is discussed in detail across several papers [16,4, 33], 
while the mixture of non-Gaussian unimodal densities is considered 
in [24, 26]. In particular, it is known that in mixtures of normal uni- 
variate distributions, the number of modes cannot exceed the num- 
ber of components, a result which does not hold in higher dimen- 
sions (compare [11]). 

The questions posed in this report are mostly complementary to 
the recent works [9, 10, 12, ?, 30] considering the estimation of the 
topology of data sets generated from noisy point-clouds. This is one 
set of works demonstrating the increasing interest in how topologi- 
cal and statistical phenomena entwine. 

2.2. Unimodal category. The following definitions are common. 
We follow the notation of [14]. 

DEFINITION 25. For A' a topological space, the LUSTERNIK-SCHNI- 
RELMANN CATEGORY of X, LSCAT(A), is the minimum number of 
open sets contractible in X which cover X. The GEOMETRIC CATE- 
GORY of X, gcat( A'), is the minimum number of open sets homotopic 
to a point which cover A. 

Some authors (including those of [14]) use a reduced category, 
which measures the minimal number of open sets minus one. We do 
not follow this convention. Geometric category gcat is a homeomor- 
phism invariant of a space, and L-S category LSCAT is a homotopy 
invariant. There are numerous deep connections between category 
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and critical point theory (the classical motivation for the subject), dy- 
namical systems, homotopy theory, and symplectic topology. 

We introduce a new variant of category for distributions based 
on decomposition into unimodal factors. 

DEFINITION 26. For X a topological space, let £> = 2>(A') denote 
the set of all compactly supported continuous distributions f : X —> 
[0,oo). 

DEFINITION 27. A distribution u e S is said to be UNIMODAL if 
the upper excursion sets uc = u_1([c, oo)) have the homotopy type of 
a point for all 0 < c < M and are empty for all c > M. Such a u has 
M as its maximal value. 

We will refer to the nonempty upper excursion sets vc C X as 
being CONTRACTIBLE, though it must be clarified that such sets are 
contractible in themselves as opposed to contractible in X. The lat- 
ter would be more in line with the definitions used in Lusternik- 
Schnirelmann theory, but would render the theory useless for most 
applications (where X = RE- 

DEFINITION 28. Fix a norm v = ||-|| on RH. The UNIMODAL v- 
CATEGORY of a distribution / e 2>(X) is defined as the minimal 
number UCAT" of unimodal distributions ua, a = 1,..., UCAT" on X 
such that / is pointwise the /v-norm of the collection (uQ). Specifi- 
cally, f{x) = \\(ua(x))\\ for all x e X. 

The most natural and fundamental example is the minimal num- 
ber of unimodal distributions required to represent a given distribu- 
tion as a sum of unimodals. Summation of the components corre- 
sponds to the 1-norm on vectors, leading to the following general- 
ization. 

EXAMPLE 29. The UNIMODAL ^-CATEGORY of a distribution / e 
S is the minimal number of unimodal distributions ua. a = 1 UCAT'' 
such that / is pointwise an tp combination. Specifically, 

(2.1) 0<p<oo    :    /(,:)= f^K(.r))"j' 

(2.2) p = oo    :   f(x) = max (ua(i)} 
(V 

LEMMA 30. Any unimodal v-category is invariant under the right- 
action of the homeomorphism group. 

2.3. Unimodal 1-category. Motivations, etc. 
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General observations. 

REMARK 31. A trivial upper bound on UCAT^/) is the number of 
local maxima of /. The corresponding unimodal summands can be 
found supported on a small neighborhood of the basins of attraction 
of the gradient flow. 

DEFINITION 32. Assume that a unimodal decomposition of / = 
Yla ua is given. A set U C sup(/) is called MAX-FREE if U does not 
contain any of the critical points of any /„. For any max-free U we 
denote by h(U) the DEPTH of U, the number of functions of the uni- 
modal decomposition not vanishing on U: 

h{U) = #{a : £/nsupK)^0}. 

The following trivial lemma is useful: 

LEMMA 33. The depth of an open max-free set U is bounded from below 

by 
maxt; / 

maxau / 

Solving the problem of computing unimodal 1-category is useful 
in other contexts: 

LEMMA 34. Tor all f e :D,UCAT"(/) =UCAT'(/ i/p) 

Univariate distributions. We commence with a computation of 
the unimodal 1-category on ©(R1). We assume that this function 
has isolated critical points. Up to a homeomorphism, this distribu- 
tion is completely characterized by the up-down sequence of critical 
values corresponding to local minima and maxima, 

0 = no < mo > ni < ... < rrtk > ft* = 0; 

where ?/., = f(x2t); mt = f(x2,+i); x0 < xx < ... < x2ki and i ^ 
0,..., A:, counting the initial and final point of the support as local 
minima. 

PROPOSITION 35. If an open interval (x2,,X2j) bounded by local min- 
ima is max-free (for some unimodal decomposition of f), then 

(2.3) n, - m, + nt+1 - ... - /77J_] + rij > 0. 

Consider the open intervals with endpoints at the local minima 
{x2i)i- Call such an interval FORCED-MAX if the inequality (2.3) is 
violated there. Obviously, forced max intervals form an ideal: any 
interval containing a forced-max interval is itself forced-max. 
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THEOREM 36. Let f e D(R) have maximal values (TO,)* and minimal 
values (ni)o' ordered according to the critical point order in the domain. 
Then UCAT^/) is equal to the maximal number of non-intersecting forced- 
max intervals: 
(2.4) 
UCAT^/) = max{jV : {x2l0,x2ll), (x2is, x2l2),..., (x2iN_l,x2lN) forced max} 

It is clear that for any collection of N nonintersecting forced-max 
intervals, the number of summands in the unimodal decomposition 
cannot be less than N: each forced-max interval, trivially, contains 
a critical point of at least one of the functions of the decomposition. 
The following algorithm yields an explicit unimodal decomposition 
and, simultaneously, a collection of nonintersecting forced-max in- 
tervals, one for each summand. 

We construct the functions uQ iteratively, left to right, according 
to the algorithm Sweep. This entails sweeping / from the left and 
pulling out unimodal factors which, on their descent, compensate 
for the remaining factors as much as possible by descending accord- 
ing to the (positive) slope df. Here, the functions ua are the differ- 
ences of heights of the interleaving curves, which have the same dif- 
ferential as / on the intervals where / is nonincreasing. A new sum- 
mand starts after the previous curve hits the x axis. 

Algorithm 1 {•«„} = Sweep(/) 

Require: / G 5)(R) with minima n, = /(J:•>,)(» and maxima m, 
/(*2i-l){ 

l: u0^=0;a4=l;5a^=/ 
2: while gn ^ 0 do 
3:      ya <= first maximum of gQ from left 
4:      ua\ (-oo,y„] <= ga 

5:      dua\ (ya, oo) <^ min(d/, 0) 
6:      un <*= max(H„,0) 
7:      increment a 

8:        3a ^ f ~ Y,3<a U0 
9: end while 

10: return {u3}0<a 

The proof that this construction is minimal follows from the ob- 
servation that the local minima spanning the curves in the graphical 
construction form a max-forced partition of the support of /. 

We have observed that, in the univariate case, the unimodal 1- 
category is a function of the critical values and the order in which 
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they appear; however, there is not a strict dependence on this or- 
dering. For example, in accordance with Lemma 30, UCAT1 must be 
invariant under reversing the order of the critical points (x <—> —x). 
There is in fact a weaker dependence on the labeled Reeb graph of 
the distribution. 

DEFINITION 37. The REEB GRAPH of a Morse function / on a 
smooth manifold M is the quotient space of M with respect to the 
relation declaring two points equivalent if they belong to the same 
connected component of a level set of /. In particular, the vertices of 
the graph are given by the connected singular level sets of /. 

REMARK 38. In the univariate case, the Reeb graph is a rooted 
metric tree, i.e., a rooted tree with lengths attached to its edges. The 
construction of this tree from an excursion is well-known in combi- 
natorics and probability theory (cf. [31]). From our construction it 
follows that for a univariate distribution UCAT1 depends only on its 
Reeb graph. In other words, one can swap the subexcursions bor- 
dering at a local maxima without affecting the unimodal number. 

2.3.1. Toward multivariate decompositions. Multivariate distributions 
introduce a number of complexities. We sketch a few results in this 
section, reserving a more complete treatment for a later work. 

An indication of the troubles arising in the multivariate case, we 
notice that an analogue of Proposition 35 is not valid there. 

The dependence of the unimodal category on the Reeb graph 
noted in Remark 38 can be extended to planar distributions: 

PROPOSITION 39. The unimodal 1-category of f e T)(R")forn -1,2 
is a function of the combinatorial type of the Reeb graph of f labeled by 
critical values. 

REMARK 40. In higher dimensions, the Reeb graph does not carry 
enough information: for example, a critical point of signature (2, 1) 
is a vertex of valence 2 on the Reeb graph, with no information about 
the change of topology under the surgery defined by the point. In di- 
mension 2, on the contrary, the change of topology is unambiguous. 

Unimodal 1-category is not solely a function of the critical point 
and Morse index data of /, but rather depends upon the critical val- 
ues as well. This dependence can be viewed in the following param- 
eterized sense. 

PROPOSITION 41. Fix a (non-unimodal) Cl distribution f e D(R"). 
For any 0 < p < oo, the unimodal p-category of the shifted distribution 
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obtained by adding Ctsupf to f for constant C > 0 is a non-increasing 
function ofC which stabilizes to 

(2.5)       lim UCAT" (/ + Clsup/) = 1 + UCAT°(/) = 1 + gcat(sup/). 
C—>00 

If one normalizes the distributions / + Clsllp/ to have unit mass, 
then one sees clearly the effect of increasing C is to reduce the total 
variation. 

2.4. Unimodal oo-category. Motivations, etc. 
General observations. Computing the unimodal oc-category in 

the univariate setting is trivial. 

LEMMA 42. For any f € ©(R1), UCAToc(/) equals the number of local 
maxima of f. 

LEMMA 43. UCAT°° is invariant under the left action o/Homeo[0, oo). 

2.5. Bounds on unimodal category. In cases where exact com- 
putation of unimodal category is difficult, one turns to bounds based 
on analytic, geometric, or topological features of the distribution. 

2.5.1. Unimodal ^-category. The monotonicity result allows one to 
define a unimodal category for (°. 

DEFINITION 44. The unimodal 0-category, UCAT0, is defined as the 
limit of UCAT'' as p -» 0. 

This limit is well-defined. 

THEOREM 45. For any f e X), UCAT°(/) = gcat(sup(/)), the geo- 
metric Lustemik-Schnirelmann category of the support of f. 

PROOF. From Lemma 34, UCAT?'(/) = UCAT1(/1/f'). As p * 0, /'''' 
approaches lslip(/). D 
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